3-2 Videos Guide

3-2a

- Introduction to series
- Partial sums
- $s_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}$
- Sequence of partial sums
$\circ\left\{s_{n}\right\}=s_{1}, s_{2}, s_{3}, \cdots, s_{n}$
- Convergence of a series
- If the sequence $\left\{s_{n}\right\}$ is convergent and the limit $\lim _{n \rightarrow \infty} s_{n}=s$ exists as a finite real number then the associated series $\sum a_{n}$ is convergent, and the sum of the series is $\sum_{n=1}^{\infty} a_{n}=s$
- Convergence of a geometric series
- $\sum_{n=1}^{\infty} a r^{n-1}$ is convergent if $|r|<1$ and divergent otherwise. If $|r|<1$, then $S=\frac{a}{1-r}$

3-2b

Theorem (statement and proof):

- If $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.
- Divergence Test:

If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.

3-2c

Exercises:

- Determine whether the series is convergent or divergent. If it is convergent, find its sum.
$\frac{1}{3}+\frac{2}{9}+\frac{1}{27}+\frac{2}{81}+\frac{1}{243}+\frac{2}{729}+\cdots$
- Determine whether the series is convergent or divergent by expressing s_{n} as a telescoping sum. If it is convergent, find its sum.

$$
\sum_{n=1}^{\infty} \ln \frac{n}{n+1}
$$

3-2d

Exercises:

- Find the values of x for which the series converges. Find the sum of the series for those values of x.

$$
\sum_{n=1}^{\infty}(x+2)^{n}
$$

- Express the number as a ratio of integers.
$10.1 \overline{35}=10.135353535 \ldots$
- A patient is injected with a drug every 12 hours. Immediately before each injection the concentration of the drug has been reduced by 90% and the new dose increases the concentration by $1.5 \mathrm{mg} / \mathrm{L}$.
a) What is the concentration after three doses?
b) If C_{n} is the concentration after the nth dose, find a formula for C_{n} as a function of n.
c) What is the limiting value of the concentration?

